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Ostrowski’s inequalities for functions
whose first derivatives are s-logarithmically
preinvex in the second sense

BADREDDINE MEFTAH

ABSTRACT. In this paper, some Ostrowski’s inequalities for functions
whose first derivatives are s-logarithmically preinvex in the second sense
are established.

1. INTRODUCTION

In 1938, A. M. Ostrowski proved an interesting integral inequality, esti-
mating the absolute value of the derivative of a differentiable function by its
integral mean as follows

Theorem 1.1 (|9]). Let I C R be an interval. Let f : I — R, be a
differentiable mapping in the interior I°of I, and a,b € I° with a < b. If
|f'| < M for all x € [a,b], then

b
f@)— 5y [Fag <Me-a)

2
+(x(—]7 x € [a,b].

This is well-known Ostrowski’s inequality. In recent years, a number of
authors have written about generalizations, extensions and variants of such
inequalities one can see [4, 5, 6, 7, 8, 15] and the reference cited therein.

In recent years, lot of efforts have been made by many mathematicians
to generalize the classical convexity. Hanson in [3], introduced a new class
of generalized convex functions, called invex functions. In [2], the authors
gave the concept of preinvex functions which is special case of invexity.
Pini [13], Noor [10, 11|, Yang and Li [18] and Weir [17], have studied the
basic properties of the preinvex functions and their role in optimization,
variational inequalities and equilibrium problems.
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Meftah [8] established the following Ostrowski’s inequality for functions
whose derivative are log-preinvex.

Theorem 1.2. Let K C [0,00) be an inver subset with respect to n : K X
K — R, a,be K° (K° interior of K ) with n(b,a) > 0 and [a,a + 1 (b,a)] C
K. Let f:|a,a+n(b,a)] = (0,00) be a differentiable function such that
"€ L(la,a+n(b,a)]) and f'(a) # 0. If |f'| is logarithmically preinvex
function, then the following inequality holds:

L (b.a) |F'(a)
n,a a
f(x)in(b,a) / flu)du gf
2 2 .
(G () a1

2 {( s — 1) A+ A “‘] A#L
for all xz € [a,a + n(b,a)], where A = 17Ol

Theorem 1.3. Let K C [0,00) be an invexr subset with respect to n: K X

K — R, a,be K° (K° interior of K ) with n(b,a) > 0 and [a,a + n (b,a)] C

K. Let f: [a,a+n(b,a)] — (0,00) be a differentiable function such that

"€ L(la,a+n(b,a)]) and f'(a) # 0, let ¢ > 1 with %Jr % =1. If|f'|"isa

logarithmically preinvex function, then the following inequality holds:
a+n(b,a)

1 1 (b,a)|f'(a)]
T) — u)du —_—
T I LA B

r—a 2 r—a 2 .
(ﬁ(baa)) + (1 " n(ba ) ’1 ZfA =1, 1
L T—a = 1 z—a 1
% (w—a>1+5 PNICONS Y q+<1_ x_a>1+; A1 A" ) ?
n(b,a) gIn A n(b,a) qInA )
if A#£1,
for all x € [a,a +n(b,a)], where A = SO

Theorem 1.4. Let K C [0,00) be an invex subset with respect to n : K X
K — R, a,be K° (K° interior of K) withn(b,a) > 0 and [a,a + 1 (b,a)] C
K. Let f: [a,a+n(ba)] = (0,00) be a differentiable function such that
f € L([a,a+n(b,a)]) and f'(a) # 0, let ¢ > 1. If | f'|? is a logarithmically
preinver function, then the following inequality holds:

a+n(b,a)
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( 1 r—a 2 rx—a 2 .
0% (W(M)) + (1 - n(b,a)) ifA=1
2 xr—a xr—a l 2

T—a 275 z—a A'nCa) + 1—ATnCa) B +(1- T—a 275

X n(b,a) n(ba) InA In? A n(b,a)
Tr—a Tr—a l
A4 ATn(B,a) z—a \ ATn®a) \ 7 .

x < In? A - (1 N n(b,a)) InA ) ) ,ifA#L

for all x € [a,a + n(b,a)], where A = J}c,(( ))“.

Sarikaya et al. [14] established the following midpoint inequalities for
differentiable log-preinvex functions.

Theorem 1.5. Let K C R be an open invexr subset with respect to n :
K x K — R. Suppose that f : K — R is a differentiable function. If |f’| is
log-preinvex on K then, for every a,b € K the following inequality holds:

a+n(b,a) 1 1 2
2a+n(ba) Lf ()2 —|f"(a)|2
/ f(w)du— f (220D | < (b,a) <log|f’(a)|10gf/(a))

Theorem 1.6. Let K C R be an open inver subset with respect to n :
K x K — R. Suppose that f : K — R is a differentiable function. Assume
q € R with ¢ > 1. If |f'|? is log-preinvex on K then, for every a,b € K the
following inequality holds:

a+n(b,a)
2a+n(b,a
i [ rwdu— g ()

a
1 q q 1
[f"(a)|2 lf"(0)12 =|f"(a)[2_ | *
< n(ba) RIS <1ogf'(a)|—1og|f’(a)|) ‘
Motivated by the above results, in this paper we establish some new Os-

trowski type inequalities for functions whose first derivatives are logarithmi-
cally s-preinvex in the second sense.

2. PRELIMINARIES

In this section we recall some concepts of convexity that are well known
in the literature. Throughout this section I is an interval of R.

Definition 2.1 ([12]). A positive function f : I — R is said to be logarith-
mically convex, if

flte+ (1 —=t)y) <[f@)] [F)]
holds for all z,y € I and t € [0, 1].



14 OSTROWSKI’S INEQUALITIES FOR FUNCTIONS WHOSE FIRST DERIVATIVES. . .

Definition 2.2. A positive function f : I C [0,00) — R is said to be s-
logarithmically convex function in the second sense on I, if the following
inequality

fltw+ (1 =ty < [F@) [FE)]"
holds for some s € (0,1], all x,y € I and ¢ € [0, 1].
Definition 2.3 ([17]). A set K is said to be invex at = with respect to 7, if
x+tn(y,z) € K

holds for all z,y € K and t € [0, 1].
K is said to be an invex set with respect to n if K is invex at each = € K.

Definition 2.4 ([10]). A positive function f on the invex set K is said to
be logarithmically preinvex function with respect to 7, if

e+t (y,2) <[f @) [f)
holds for all z,y € K and ¢ € [0, 1].
Definition 2.5 ([16]). A positive function f on the invex set K C [0, 00)
is said to be s-logarithmically preinvex function in the second sense with

respect to n, if

s

f @+t (y.2) < [f @1 @)
holds for all z,y € K and t € [0, 1].
The following lemmas are essential to establishing our main results.
Lemma 2.1 ([1]). Let 0 < ¢ <1 <1 and t,s € (0,1], then
¢ < ¢,
Wt < gt

Lemma 2.2 (|4]). Let A C R be an open inver subset with respect to n :
AxA — R anda,b € A with a < a+ n(b,a). Suppose that f : A — R
is a differentiable function. If f' is integrable on [a,a + n(b,a)], then the
following equality

) a+n(b,a)
@) - s [ fu)du
W) 1
=1n(b,a) / tf'(a+tn(b,a))dt + / (t—1)f(a+tn(ba))dt
0 z—a

n(b,a)

holds for all x € [a,a + n(b, a)].
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3. MAIN RESULTS

In what follows we assume that K C [0,00) be an invex subset with
respect to the bifunction n: K x K — R and a,b € K°interior of K with
a < a+ n(b,a) such that [a,a +n(b,a)] C K.

Theorem 3.1. Let f : [a,a+n(b,a)] = (0,00) be a differentiable function
such that f" € L([a,a+n(b,a)]). If |f'| is s-logarithmically preinvez func-
tion in the second sense for some fized s € (0,1] with |f'(a)| # 0, then for
all x € [a,a + n(b,a)] we have the following inequality

a+n(b,a)
@ - [ f@dul <nt.a)

N (LIRS ecaldih ) g,
’ s 2 2
X Ll < (&) + (1-&5) ) if 1f/(a)) < 1=
12 7 1—s 2 2
HallFol < (;i;;ﬁ) + (1— ;E;;S) ) if |f' (@) >1=X
where
C1F'0)]
@) A= )l
and
(@), if 1f/@],11/®)] < 1;
- Ny = A @O i (@) < 1< 17 0)];
N7 ()] if If/ O] <1< |f(a)l;
P @ F O i 1@, [ ®)] > 1.

Proof. From Lemma 2.2, and property of modulus, we have

a+n(b,a)
@i [ fdu

r—a

7(b,a) 1
<n (b, a) t|f'(a+tn(b,a)|dt+ (1=0)|f'(a+tn(ba))|dt
/ /

Tr—a
n(b,a)
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Since |f'| is s-logarithmically preinvex function, we deduce

a+n(b,a)
@) - it [ fwdu

r—a
n(b,a)

< n(b.a) / EL (@) )| at

0

1
" / -6 |F@]" | o) at

r—a
n(b,a)

(3)

From Lemma 2.1, we have

(4) /@] 0] < Ny x A%

where A and N(, ) are defined by (1) and (2) respectively.
Substituting (4) into (3), we obtain

a+n(b,a)
f@) ~ i [ Fwdul <nl.0 x Ny

z—a
n(b,a) 1

(5) X / tASEdt + / HATdt

(

Clearly, in the case where A # 1, we have

ngib_,z) a
r—a A W(b a) 1 . )\Sn(b,a)
6 Ast = 1a) N 7
) { sln A (sln )\)2
and
y s T—a STy
(7) / )\Stdt A5 — \¥na) B (1 — 77(b’a)))\ n(b,a)
(sIn >\)2 sln A )
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Substituting (6) and (7) into (5), we obtain

a+n(b,a)
@) =it [ f@du <n0.0)

9 z=a 1)\ n(b.a) s L=a
( n(b,a) ) 14+25—2) 75,9
(8) XN(S:)\) sln A + (sInX)?

Now, we assume that A = 1, then (5) gives

f(u) du| <n(b,a)

X b(l lf a

The desired result follows from (8) and (9). O

~
—~
8]
S~—
|
3
=
S=
2
2
S
+
8 — 3
=
<
2
2

Corollary 3.1. In Theorem 3.1, if we choose x =
the following midpoint inequality

2a++(b7a), then we obtain

a+n(b,a)
f <2a+g(b,a)) _ n(l},a) / flu)du

Nlw

N (525 )27 if A £
< 7(ba) § LG@E, if 11/ (@) < 1=
\f’(a)llﬁ’(b)ll“" if |f'(a)] > 1=\
Remark 3.1. Theorem 3.1 will be reduces to Theorem 7 from [8] and Corol-

lary 1 will be reduces to Corollary 8 from [8] and Theorem 4.1 from [14] if
we put s = 1.

Corollary 3.2. In Theorem 3.1, if we choose n(b,a) = b — a, we have the
following inequality
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(

2x_<b+a))/\s“g:g

( b—a 1 As,Q,\Sg . .
N(s)\) sln A + +(sln)\)2 ) ) 7’f>‘ 7& 17

Y ((r2) + (12)) #1F@) < 1=
w( (17_)2+(2_)2> if /(@) > 1= A

Moreover if we choose s = 1 we get the following inequality

b

f<x>—b_1a/f<u>du <(b-a)

a

oy [T
[/"(a)l In A + (In \)2 , fAFEL

Wyﬂ((i$>?+(;ﬁf), if1=\
a+b

Corollary 3.3. In Theorem 3.1, if we choose 1 (b,a) = b —a, and v = %57
we have the following inequality

b
f(a;b)—g/ﬂu)du < (b—a)

AS—oA% . .
N@MG%E%#) fA#L

% M%m)l if 1f/(a)] < 1=\
VRIS | @) > 1=
Moreover if we choose s =1 we get the following inequality
’ =A%
I , i A#EL
f(%?f—ﬁa/fmth<(b—aﬂfmﬂx 5 fA#
“ Lol if1=A

Remark 3.2. The case A # 1 in the last inequality of Corollary 3.3 represent
Corollary 4.3 from [14].

Theorem 3.2. Let f : K — (0,00) be a differentiable function such that ' €
L(la,a+n(b,a)]), and let ¢ > 1 with % + % = 1. If | f'|* is s-logarithmically
preinvez function in the second sense for some fizved s € (0,1] with |f'(a)| #
0, we have the following inequality

a+n(b,a) (b.0)
_ 1 d < n\o,a
f(z) n(0,a) / f(u)du| < v+ 1)%

a
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1 rx—a
N z—a \'Tr (A0 1)
(s,q,2) n(b,a) gsln A
1

1

if A# 1,

where X is defined as in (1), and

f'(a
/' (a
' (a

)
)
)
|f'(a)

”, if |f' (@), 1F' () <15
L@, i [fa) <1< [0
1, if 1f' O <1< (a)l;
L@, if 1@l 1)) > 1,

if [f(@)] <1=X
if [f'(a)] >1=A,

Proof. From Lemma 2.2, property of modulus, and Holder’s inequality, we

have

r—a o Tr—a L

n(b,a) n(b,a) !
< n(b,a) /tpdt |f/(a+tn(ba)|"dt

0 0

o [ a-o

r—a

n(b,a)

Q=

/ ‘f’(a—i—tn(b,a))‘th

VP dt (
n(b,Z)

Q|

1 n?b Z)
)7 [ I e
0
144 L !
) [ 1t ar
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Using the fact that |f’|? is s-logarithmically preinvex and Lemma 2.1, we
obtain

a+n(b,a)
flx) — n(l}’a) flu)du
' s—a 1
141 i . . q
< 2 ()| L@ o ar
0

1

s-g) @ e a

nz(;z)
r—a l
1 e /
< T](b7a)N(siq,)\) ( r—a >1+5 / )\qst dt
N SV n(b.a)
0
1
1 q
r—a 1+% gst
(11) + (1 - n(b,a)) / oSt ¢
n?b_yz)
For A # 1, (11) becomes
) a+n(b,a)
flx) — / flu)du
(z) T (0.) (u)

1 u 1
< n(b,a) NG an ( r—a )H; AT — 1\
- (p—l—l)% 1 (b,a) gsin\

1
(12 AN PUES SR
1 (b, a) gsln\ ’

where A and N, ) are defined as in (1) and (10) respectively, and the fact
that
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r—a

n(b,a)

AT — 1
At =
/ gsln\ 7
0
1 )\q )\qs az;a)
s _ n(b.a
At Q="
/ qsln A
nszb_,;l)
In the case where A = 1, (11) becomes
. a+n(b,a)
- d
f@) = o [ fda
1L | f'(a)]? (< )+ (1 >2> , if |f'(a) < 1;
(p+1)7 | n(ba) n(b,a)
MOONE 45 | 1y 2—s c—a )2 _ z-a\? £
i@l (Gry) (- as) ) @i
From (12) and (13) we get the desired result. O

Corollary 3.4. In Theorem 3.2, if we choose x = 2a++(b’a), then we obtain
the following midpoint inequality

a+n(b,a)

FEge) - s [ s

1 ) )
N1 qs 7 as \ -
(s,q,\) A2 —1\¢ NIS_\T2 \ ¢ .
n(b.a) = <<qsm) +< astn ) ) At
F(a)l’, if 1f/(@)] <1=,
F(a)*, ifIf' (@) >1=A
Remark 3.3. Theorem 3.2 will be reduces to Theorem 11 from [8], and

Corollary 3.4 will be reduces to Corollary 12 from [8] and Theorem 4.2 from
[14] if we put s = 1.

Corollary 3.5. In Theorem 3.2, if we choose 1 (b, a) = b—a, then we obtain
the following inequality
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1
1 _ 1
—a 1+; )\qSH—l q
—a gsln A
_ 1

=) (B)). rr@isi-x
b ((2) + (5)). dir@1=x

1 we get the following inequality

<<I_Z>1+;1) <,\‘1§1—5)\—1>‘1 n (b—2>1+117 <>\q;i\;§_§>;> AL
(e ) e

. _ _ b
Corollary 3.6. In Theorem 3.2, if we choose n(b,a) =b— a, and x = %

we have the following inequality

b
b—a
P - s [ S aul < 2
; (p+1)r
N g\ L gs\ 1
(s,a,\) AZT-1)\¢ AE_\TZ | ¢ . )
214;1%/\ ((qslnk) + ( gsIn X ) ) ) ZfA 7& L
X
51/ @)l”, if1f' (@) <1=X
L @P, if1f (@) >1=A
Moreover if we choose s = 1 we get the following inequality
y b
—a
F(452) = ks [ ) du) € 2= |0
; 2(p+ 1)
1 1
1 AZ_1\4 A3\ @ : ,
x{ 2% ((qm> +< gTn ) ) A7 L
1, if 1= A\

Remark 3.4. The case A # 1 in the last inequality of Corollary 3.6 represent
Corollary 4.4 from [14].

Theorem 3.3. Let f : K — (0,00) be a differentiable function such that
' € L(la,a+mn(b,a)]) and let ¢ > 1. If |f'|? is s-logarithmically preinvex
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function in the second sense for some fived s € (0,1] with |f'(a)] # 0, then
we have the following inequality

a+n(b,a)
1
f(z) — n(b,a) f(u)du
a

1
1 a s T—a_ q

n(b,a) N (S Y 2— )\ ﬂ(ba) +1_/\qsn(b’a>

2177 qsln)\ (gsIn )2
1
ba 5

+(1- aas )1 *7<ba> _ (1 G, ))A )

< n(b a) qsln)\ gsln A ’

AL
2 2
b,a)|f’ ° T—a z—a ; =
niba)lf'(a) ((nw,a) +(1- &5) ) L If@) < 1=
"(a 2—s T—a 2 r—a 2 .
el o) ((mbm) b (1- 22 ) if 1f'(a)] > 1= A,

where X\ and N4 5y are defined as in (1) and (10) respectively.

Proof. From Lemma 2.2, property of modulus, power mean inequality, s-
logarithmically preinvexity of |f/|?, and Lemma 1, we get

. a+n(b,a)
f(x) — flu)du
D e, )T
T—a 1-2 r—a i
n(6,a) N 0] !
< 1n(b,a) /tdt t|f'(a+tn(b,a)|*dt
0 0
1-- 3
1 ! 1 !
+ / (1—t)dt / (1—t)[f'(a+tn(ba)| dt
nz(b_,g) n:lzb_vz>
1
N E1CT) !
n (b, a) ( T—a >2<1_Q) / / q
= t f a+tn b7a‘ dt
ol—7 1 (b, a) 71 &,e))



24

OSTROWSKI’S INEQUALITIES FOR FUNCTIONS WHOSE FIRST DERIVATIVES. . .

1
N <1_ x—a)2<1q>
1(b,a)

2
< 7 (b, a) <:L‘—a)2_q
B 21_l U(ba@)

92 L
r—a a
+(1-
< n(b,a)) .
1
< n (b, a) (qS,q)\) T —a

22 1
(13) +(1— w(b_a)) ’ /(l—t))\q“dt
1 (b,a
(ba)

7(,a)

1

/ (L—=t)|f(a+tn(ba))|"dt

r—a

n(b
X

,a)

2la

n(b/

a

)
" ‘f’(a)|q(1_t)s

r—a
n(b,a)

At At

o))" at

Q=

where A and Ny, 5 are defined as in (1) and (10) respectively.

For A # 1, (13), becomes

a+n(b,a)
1
flx) — flu)du
1 (b, a)
a
@ 22 [ a—a \Tya) s Zoas
10N 4,0) z—a @ [ awa® " 1-2\""n.a)
= 21_% n(b,a) gsln A (gsn )2
.2 vy (e
(14) +(1- r—a q A28 —)\""n(b,a) _ n(b,a)
n(b,a) (gsIn )2 gsIn

where we have used the fact that

n(l:,a) '7 qs z;a —a
t)\qst dt = n(b,a))‘ m(5.2) + 12" na)
gslnA (gsln X)?

0

Q=

S

Q=

[ a=olr@r o) a

Q=
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and

1 T—a

T—a 55 (0,a
q5tdt IS — A n(b a) . (17777(17,0,)))\ n( )
T (gsIn))? gsln A ’

z a
,a)

In the case where A = 1, (13) gives

a+n(b,a)
f() / Flu
(15) 2 2
b,a "(a)® T—a T—a :
n( )\Qf( )l ((n(b’a» + (1 — n(b,a)) > , if |[f'(a)] < 1=\
<
o ba)lf'(a)|*~* z—a 2 T—a 2 :
b0l ) ((n@,a)) (1 25) ) L) > 1= A
Thus, from (14) and (15) we get the desired result. O
Corollary 3.7. In Theorem 3.3, if we choose x = 2a++(b’a), then we obtain

the following midpoint inequality where

a+n(b,a)
() - / f(w)du

1 . 1
n(ba)N? < 2 " 1% )5+ (Aqs_Ag 2% )5
_% ZgsInA (gsIn))? (gsln X)? 2gsln X\ ’
if A # 1,
b, ! s )
wbA @l if | (a)] < 1=

n(b,a) fzi(a)|27s’ if |f'(a)] > 1=\

IN

Remark 3.5. Theorem 3.3 and Corollary 3.7 will be reduces to Theorem
15 and Corollary 16 from [8] if we put s = 1.

Corollary 3.8. In Theorem 3.3, if we choose n (b, a) = b—a, then we obtain
the following inequality
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1 2 r—a L
q JE— r—a\95p—¢ gx—a q
b—a)N( e—a\ 277 [ TP + 1-2""b=a
-1 —a gsln A (gsln X)?
2 q
1
2 z—a a
_Z z—a b—x 94574 a
+ b—z =3 A5 2\Pb—a (bfa))\ b Zf)\;é 1:
< —a (gsln X)? gsln A ’ ’

(=a)lf (@ <<;§_)2 + (g:—ﬁ)z > : iflf (@) <1=X
W((b_)2+(2’—)2) if1f(@)] > 1=

Moreover if we choose s = 1 we get the following inequality

\

1

2 Tx—a =
—— —a\9p—q z—a q
G-alf(@)] [ (z=a\*77 [ =270 1atho
Gy
2 z—a b— q7=2 %
+ b—zx 2_5 )\q_)\qm B (ﬁ))\ b—a /LfA # 1
b—a (gIn ))? qInX , ;

W((b_)2+(2_)2> if1= A

Corollary 3.9. In Theorem 3.3, if we choose n(b,a) =b—a, and x = %H’
we have the following inequality

IN

r (b—a)N(?q,/\) (( ME 1A );—I— (Aqs_A% % >}1)
3-7 2gslnd T (gslnA)? (gslnn)?  2gshnA ;
if A # 1,
Ll | a)) < 1=
[ Gl @) > 1= A

IN

Moreover if we choose s =1 we get the following inequality
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IN
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